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If p is an odd prime, we have seen that (Z/pnZ)× is cyclic for all n ≥ 1. However, we have
also shown that the group (Z/2nZ)× is only cyclic for n = 1, 2. This is because ϕ(2n) = 2n−1

but we have congruence
a2

n−2 ≡ 1 (mod 2n) (1)

for all odd a and n ≥ 3. This means that when n ≥ 3, there are no elements of order
exceeding 2n−2 in (Z/2nZ)×. Notice that 2n−2 = ϕ(2n)/2 is then the largest possible order
allowed for an element of (Z/2nZ)×, and it is natural to ask whether an element of this order
actually exists. As we will shortly see, such an “almost primitive root” always exists, and
can be given explicitly. We begin with two lemmas.

Lemma 1. Let k ∈ N. Then 5k + 1 = 2` where ` is odd.

Proof. We have
5k + 1 ≡ 1k + 1 ≡ 1 + 1 ≡ 2 (mod 4).

The conclusion follows at once.

Lemma 2. Let k ∈ N. Then

52k − 1 = 4
k−1∏
j=0

(
52j + 1

)
.

Proof. We induct on k. When k = 1 we have

52 − 1 = (5− 1)(5 + 1) = 4(520 + 1),

so that the result holds. Now assume the result for some k ≥ 1. Then

52k+1 − 1 =
(

52k
)2
− 1 =

(
52k − 1

)(
52k + 1

)
= 4

k−1∏
j=0

(
52j + 1

)(
52k + 1

)
= 4

k∏
j=0

(
52j + 1

)
,

which completes the induction.

Remarks.

1. The conclusion of Lemma 2 holds for k = 0, too, provided we interpret the empty
product as equal to 1.
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2. If we replace 5 by the variable X, the proof of Lemma 2 yields the polynomial factor-
ization

X2k − 1 = (X − 1)
k−1∏
j=0

(X2j + 1),

which expresses X2k − 1 as the product of irreducible cyclotomic polynomials.

3. All of our results remain valid if 5 is replaced by any integer a satisfying a ≡ 5 (mod 8).

Corollary 1. Let k ∈ N0. Then 2k+2 exactly divides 52k − 1. That is, 2k+2|52k − 1, but

2k+3 - 52k − 1.

Proof. If k = 0, the result is immediate, so we assume that k ≥ 1. By Lemmas 1 and 2 we
then have

52k − 1 = 4
k−1∏
j=0

(
52j + 1

)
= 52k − 1 = 4

k−1∏
j=0

(2`j) = 2k+2

k−1∏
j=0

`j,

for some odd integers `j. The result now follows.

We can now prove our first main result.

Theorem 1. Let n ≥ 2. Then 5 has order 2n−2 modulo 2n.

Proof. When n = 2 there is nothing to prove, since 5 ≡ 1 (mod 4). So we suppose that n ≥ 3.

Then we may apply Corollary 1 with k = n− 3 to conclude that 52n−3 ≡ 1 (mod 2n−1) and

52n−3 6≡ 1 (mod 2n). Since the order of 5 modulo 2n must divide 2n−2 by (1), this yields the
conclusion.

Because 5 is “almost” a primitive root modulo 2n, we can “almost” express every odd
integer (modulo 2n) as a power of 5. Specifically we have:

Theorem 2. Let n ≥ 2. Then for every odd a ∈ Z there exist unique ε ∈ {±1} and
0 ≤ k ≤ 2n−2 − 1 so that

a ≡ ε5k (mod 2n).

Proof. Because 5 has order 2n−2, the 2n−2 congruence classes

5k + 2nZ, 0 ≤ k ≤ 2n−2 − 1

are all distinct, as are the 2n−2 classes

−5k + 2nZ, 0 ≤ k ≤ 2n−2 − 1.

If we can show that these two lists have no classes in common we will be finished, since then
we will have 2n−2 + 2n−2 = 2 · 2n−2 = 2n−1 = ϕ(2n) distinct congruence classes.

So assume to the contrary that 5k +2nZ = −5`+2nZ for some k, `. Then, by cancellation,
we find that 5j ≡ −1 (mod 2n) for some j ∈ N0. That is, 2n|5j +1. This contradicts Lemma
1, and completes the proof.

In the language of group theory, Theorem 2 shows that for n ≥ 3 there is an isomorphism

(Z/2nZ)× ∼= {±1} × 〈5 + 2nZ〉 ∼= Z/2Z× Z/2n−2Z.
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